液压泵的工作特点;
(1)液压泵的吸油腔压力过低将会产生吸油不足,异常噪声,甚至无法工作。因此,除了在泵的结构设计上尽可能减小吸油管路的液阻外,为了保证泵的正常运行,应该使泵的安装高度不超过允许值;避免吸油滤油器及管路形成过大的压降;限制泵的使用转速至额定转速以内。
(2)液压泵的工作压力取决于外负载,若负载为零,则泵的工作压力为零。随着排油量的增加,泵的工作压力根据负载大小自动增加,泵的最高工作压力主要受结构强度和使用寿命的限制。为了防止压力过高而使泵、系统受到损害,液压泵的出口常常要采取限压措施。
(3)变量泵可以通过调节排量来改变流量,定量泵只有用改变转速的办法来调节流量,但是转速的增大受到吸油性能、泵的使用寿命、效率等的限制。例如,工作转速低时,虽然对寿命有利,但是会使容积效率降低,并且对于需要利用离心力来工作的叶片泵来说,转速过低会无法保证正常工作。
(4)液压泵的流量具有某种程度的脉动性质,其脉动情况取决于泵的型式及结构设计参数。为了减小脉动的影响,除了从造型上考虑外,必要时可在系统中设置蓄能器或液压滤波器。
(5)液压泵靠工作腔的容积变化来吸、排油,如果工作腔处在吸、排油之间的过渡密封区时存在容积变化,就会产生压力急剧升高或降低的“困油现象”,从而影响容积效率,产生压力脉动、噪声及工作构件上的附加动载荷,这是液压泵设计中需要注意的一个共性问题。
液压马达的工作特点
(1)在一般工作条件下,液压马达的进、出口压力都高于大气压,因此不存在液压泵那样的吸入性能问题,但是,如果液压马达可能在泵工况下工作,它的进油口应有最低压力限制,以免产生汽蚀。
(2)马达有应能正、反运转,因此,就要求液压马达在设计时具有结构上的对称性。
(3)液压马达的实际工作压差取决于负载力矩的大小,当被驱动负载的转动惯量大、转速高,并要求急速制动或反转时,会产生较高的液压冲击,为此,应在系统中设置必要的安全阀、缓冲阀。
(4)由于内部泄漏不可避免,因此将马达的排油口关闭而进行制动时,仍会有缓惯的滑转,所以,需要长时间精确制动时,应另行设置防止滑转的制动器,
(5)某些型式的液压马达必须在回油口具有足够的背压才能保证正常工作,并且转速越高所需背压也越大,背压的增高意味着油源的压力利用率低,系统的损失大。